Computer Organization


Q241.

Consider a 6-stage instruction pipeline, where all stages are perfectly balanced. Assume that there is no cycle-time overhead of pipelining. When an application is executing on this 6-stage pipeline, the speedup achieved with respect to non-pipelined execution if 25% of the instructions incur 2 pipeline stall cycles is _________.
GateOverflow

Q242.

A CPU has five-stages pipeline and runs at 1GHz frequency. Instruction fetch happens in the first stage of the pipeline. A conditional branch instruction computes the target address and evaluates the condition in the third stage of the pipeline. The processor stops fetching new instructions following a conditional branch until the branch outcome is known. A program executes 10^{9} instructions out of which 20% are conditional branches. If each instruction takes one cycle to complete on average, then total execution time of the program is
GateOverflow

Q243.

Consider a non-pipelined processor with a clock rate of 2.5 gigahertz and average cycles per instruction of four. The same processor is upgraded to a pipelined processor with five stages; but due to the internal pipeline delay, the clock speed is reduced to 2 gigahertz. Assume that there are no stalls in the pipeline. The speed up achieved in this pipelined processor is_________.
GateOverflow

Q244.

The performance of a pipelined processor suffers if:
GateOverflow

Q245.

Consider the following processors (ns stands for nanoseconds). Assume that the pipeline registers have zero latency. P1: Four-stage pipeline with stage latencies 1 ns, 2 ns, 2 ns, 1 ns. P2: Four-stage pipeline with stage latencies 1 ns, 1.5 ns, 1.5 ns, 1.5 ns. P3: Five-stage pipeline with stage latencies 0.5 ns, 1 ns, 1 ns, 0.6 ns, 1 ns. P4: Five-stage pipeline with stage latencies 0.5 ns, 0.5 ns, 1 ns, 1 ns, 1.1 ns. Which processor has the highest peak clock frequency?
GateOverflow

Q246.

Consider a pipelined processor with the following four stages: IF: Instruction Fetch ID: Instruction Decode and Operand Fetch EX: Execute WB: Write Back The IF, ID and WB stages take one clock cycle each to complete the operation. The number of clock cycles for the EX stage depends on the instruction. The ADD and SUB instructions need 1 clock cycle and the MUL instruction needs 3 clock cycles in the EX stage. Operand forwarding is used in the pipelined processor. What is the number of clock cycles taken to complete the following sequence of instructions? ADD R2, R1, R0 (R2 \leftarrow R1 + R0) MUL R4, R3, R2 (R4 \leftarrow R3 * R2) SUB R6, R5, R4 (R6 \leftarrow R5 - R4)
GateOverflow

Q247.

If a microcomputer operates at 5 MHz with an 8-bit bus and a newer version operates at 20 MHz with a 32-bit bus, the maximum speed-up possible approximately will be
GateOverflow

Q248.

Consider a typical disk that rotates at 15000 rotations per minute (RPM) and has a transfer rate of 50x10^{6} bytes/sec. If the average seek time of the disk is twice the average rotational delay and the controller's transfer time is 10 times the disk transfer time, the average time (in milliseconds) to read or write a 512-byte sector of the disk is ______.
GateOverflow

Q249.

Six files F1, F2, F3, F4, F5 and F6 have 100, 200, 50, 80, 120, 150 records respectively. In what order should they be stored so as to optimize act. Assume each file is accessed with the same frequency
GateOverflow

Q250.

For a magnetic disk with concentric circular tracks, the seek latency is not linearly proportional to the seek distance due to
GateOverflow